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In this paper we study the validity of couplimgpedance HP ¢ gPUT SREF

bench measurements, comparirtgo of . the most_ whereZ, is thecharacteristic impedander a coaxial line
commonly used formulas to the result obtained applylnge%ual 1060 In(b/s) Q

modified version of Bethe's theory ofliffraction to a In Eq.(1) the S, méasuredor the device undertest is
lumpedimpedance in @oaxial beam pipe. Thequations y

; . . _ normalized to that of a reference section of equal length. In
found provide a quantitative expression for the influence ﬂtlo

the wire thick din th t ofghband e following we will always assume that theference
the wire thickness used in tne measurement o a0 jine has been calibrated out and will simply refeBio
imaginary part of the longitudinaimpedance. The

recision achievable in an actual measuremetitcefore We also assumeerfect matching in the measuring
precist eV ! u u eguipmentand lossless materialand we will consider

discussed. The method presented can also be applied inc} S’ TEM waves which is arigorous treatment for
presence of distribute_d impedances wasll as to the frequenciesbelow the TE, mode cut-off, above which
analysis of transverse impedance measurements. this measurement technique is not accurate anyway.

. 1 lNTRO?UCTIQN . 2.1 Measured Impedance Calculation
Bethe's diffraction theory, irits mOd.'f'Ed version [1], has -, the absence othe couplingaperture, théncidentfield
been successfullyused to analytically calculate the (o, Hog) is of course confined tohe inner coaxial line

coupling impedance of differenstructures thatcan be and travels the length of the component experienaitlg

I\c/l)und Inan fllcceleratolr vacuum ﬁhamtt))zr Es]t d o th a phase delay. Whehis delay is taken intoaccount by
ore recently, several papers have beedicated 1o the normalizing with thereferencesection, S,,=1 and the

theqry of coupI!nglmpedanqebench mgasurements, mimpedance is zero, as expected.
particular regarding the classic coaxial wire method [6—7]..|.he presence ofthe aperture generatesorward and

:n thtls dpapl)gr wguse Befthes tf|1|e0ry rtto calculate thg | backward scatteredvaves travelling in both coaxial
ongitudinalimpedance of ssmall aperture on a coaxia regions. From the scattering matrix definition we can
beam pipe, as ivould be ideallymeasured in a coaxial write:

wire set-up. The analytical formutzbtained iscompared Ho +H* +

to the formuladerived in [2], which has been checked S, =—2 - Eor * By )

against MAFIA simulationsand other semi-analytical Hop Eor

methods. This comparison gives some insight on thghere (E;, H;;) is the forward wave in the inner region.

influence of the wire on the measurememd on the

differences between the various formuleed to relate the b ko2
i i Eir =G &€ 9(2)

measured scattering parameters to the actual impedance. i (3)
Hjy =G h,e"%0(2)

wherek,=217A is the wavenumbei§(z) is the Heaviside

function,Z,=377 Q is the vacuunimpedanceg, andh;,

are the TEM modal function in the inner coax
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This wave can be expressed as:
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Figure 1: Relevant geometry andthe excitation constant;” depends orthe equivalent
2 MEASURED IMPEDANCE dipole moments of the apertuv andP,:
TP - +——j“’( My +&R) 5
The longitudinal impedance of a small (with respect to the G = o Hhs M, +& R r=b ®)

wavelength) aperture on a coaxial beam pipe as shownTipe equivalent dipolemoments, in turndepend on the

Fig.1 can be calculateffom the measuredS,, parameter aperture polarizabilities, anda,,, and on the incident and
using the Hahn-Pedersen formula [8]: scattered fields:
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M¢ = amD(Ho¢ + Hllf’ - Hw )r:b
R = eag(Ey +Er ~Eop)
where E,, Hy) is thescattered field irthe outercoaxial
region for which equations analogous Ems.(3-5) are
valid, if we just replace lifb/s) with In(d/b) and the
subscripti with o.

From theseequations we calculatéhe dipole moments
expressions:
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where
_ In(d/b)In(b/s) ®

In(d/b)+In(b/s)
It is worth noticing that the expression for tligole
moments obtained when directly calculating itn@edance

(i.e. with thewire removed) differsfrom Eq.(7) only in
that A =In(d/b) which is the limit fors - 0 of Eq.(8).
As it is already known from practicenpedances arbest
measured with the thinnest possible wire.
ReplacingEq.(7) in Eq.(5) weobtain the expression for
the coefficient of the forward scattered wave in the
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and from Eqgs.(2)and (3) the scatteringcoefficient is

therefore:
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Replacing Eq.(10) in Eq.(1), we obtain:
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3 COMPARISON WITH THEORY

An analytical formula for the longitudin@hpedance of a
small aperture atow frequencieshas beerderived in [2]
using the modified Bethe’s diffraction theory:
koZo H ko(as +azn)0
Z, = a.t+a +
1= arzpz 00 o)t nd b

13)
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We can compare Eq.(13) to Eq.(1dijnplified for small
aperturedimensionsand low frequency. Tothis end we
keep in mindthat the polarizabilitiesare proportional to
the aperture average radiusubed and that k, is
proportional to the frequency.

Therefore, disregardinkigher orderterms ina,, a,,; and
k, EQ.(12) becomes:

Zup =32 { (G ) + N
ko 2 In(d/s)D
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It is also interesting t@ompare Eqgs.(13nd(14) to the
impedance obtaineffom the measuredS,; using Sands
and Rees expression [9]:

Iy = ch(l - 521) (15)
which, substituting Eq.(10) and simplifying for small
aperture dimensions and low frequencies, becomes:
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3.1 Imaginary Impedance

We can see immediatelrat the imaginary part of the
impedance, as calculated in Eqgs.(13,14) and (16&xastly
the same:

IMZ) =i, @t a) )

This is not surprising since the imagindampedance is
dominated bythe reactive energy stored ithe modes
below cut-off (i.e. non propagating)near the aperture.
These modes are, gburse, not muctinfluenced by the
presence of the wire.

It is worth pointing out that, apparently, Eq.(17) is totally
independent from the wire radiasThis is not so as, i§
should increase to become comparable Wjtthe aperture
polarizabilities would be modified.

3.2 Real Impedance

In this case Egs.(13,14) and (16) coincide only inlitimet
s - 0, as already stated above:
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and
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To further analyzethe difference betweenthe various
formulas we define an “error” function as follows:



_ Re(Z..)-Re(Z;)

E.. (21)
Re(Z)
whereZ.. can be eitheone of themeasured
Zp andZge
We find
In(d/s)
= -1 22
F In(b/s) (22)
and
In(d/s)0
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ae +amD

In(b/s)

Z; =Re(Zg) In(d/s)

+jIM(Zx) (25)

impedances The procedure presented in this paper can alsexteaded

to the study of thetransverse impedancand used for
structures more complex than this simple example.
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The function multiplyingEsg reachests maximumvalue

of 1 for y=1 and decreasesnonotonically to zero

elsewherey=1 corresponds tdhe case of avery long

rectangular or rounded-end slot.

This means thaE,; < Eg, i.e. theimpedancemeasured

using theHahn-Pederseformula is always closer to the
theoretical value than if thBands-Rees formula igsed.
As an example, for acircular hole y=2 and so
Ep = 0.8Ex.
This is also consistent with tHact that the Sands-Rees
formula can be derived froithe Hahn-Pederseane as the
latter approximation fosmall values of the@mpedance
(8].

4 CONCLUSIONS

In this paper we used a modification Béthe’s diffraction
theory to calculatethe impedance of an aperture in a
coaxial beam pipe as ivould be measuredusing the
classic coaxial wire techniqueThis result hasbeen
compared tothe impedance value obtainedapplying
directly the diffraction theory.

The imaginary part of thémpedance isnot affected, in
first approximation, by the wir@resenceand the Hahn-
Pedersen and the Sands-Rees formulas give the same result
as the direct calculation.

For thereal impedancethe Hahn-Pederseformula gives
an impedancalways closer to the theoretical value than
the Sands-Ree®ne. Thedifference between theoretical
impedanceand as calculated by Sands-Rees does not
depend onthe aperture polarizabilities so that it is
possible to write @eneralformula that allows to obtain
the theoretical impedance value from the measured one:



